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1. Introduction

In this paper, we describe the equilibrium and stability of dihe-
dral ‘star’ tensegrity structures which we derive from the classic
dihedral prismatic tensegrity structures. Both of these two classes
of structures are of dihedral symmetry, and therefore, the stability
properties of the star structures can be investigated by the meth-
ods for the prismatic structures in our early studies (Zhang et al.,
2009a,b).

The horizontal cables in each of the two parallel circles contain-
ing the nodes in a prismatic structure are replaced by a star of
cables in a ‘star’ structure, with a new centre node. An example
‘star’ structure is shown in Fig. 1(b), along with the parent pris-
matic structure in Fig. 1(a). Also shown in Fig. 1(c) is a modified
version of the structure, where there exists a centre member con-
nected to the two centre nodes.

There is a clear link between the star structures, and the parent
prismatic structures that were studied by Connelly and Terrell
(1995) and Zhang et al. (2009a). Indeed, we shall see that the equi-
librium positions of the nodes, and self-stress forces in the vertical
cables and the struts, are identical in the star and prismatic struc-
tures, as long as there is no centre member. However, the star
structure has many more infinitesimal mechanisms than its parent
prismatic structure: at each of the boundary nodes, a strut is in
equilibrium with two cables, all of which must therefore lie in a
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chitecture and Urban Design,
higa 525-8577, Japan.
).
plane; thus, out-of-plane movement of the node must be an infin-
itesimal mechanism, and there are at least six infinitesimal mech-
anisms – in fact there is another infinitesimal mechanism
corresponding to the existence of one self-stress mode of the struc-
ture. By contrast, there is only one infinitesimal mechanism in the
prismatic tensegrity structure. Despite this, we will show that
many dihedral star tensegrity structures can be stable, and further,
that in some cases they are super stable, which implies that they
are stable for any level of self-stress, independently of the stiffness
of the members.

Following this introduction, the paper is organized as follows:
Section 2 uses the symmetry of a star structure to find its configura-
tion and self-stress forces in the state of self-equilibrium. Section 3
presents the necessary and sufficient condition for an ‘indivisible’
structure. Section 4 block-diagonalises the force density matrix
and finds the condition, in terms of connectivity of vertical cables,
for super stability of the star structures; prestress stability of the
structures that are not super stable is numerically investigated. Sec-
tion 5 briefly concludes the study on the star structures, and dis-
cusses the stability properties of those with centre members.
2. Configuration

In this section, we introduce the connectivity and geometry of a
general star structure, and find the internal forces that equilibrate
every node. The structure has dihedral symmetry, and this symme-
try allows us to calculate symmetric state of self-stress by consid-
ering the equilibrium equations of only representative nodes.

http://dx.doi.org/10.1016/j.ijsolstr.2009.05.018
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Fig. 1. Tensegrity structures that are of the same dihedral symmetry D3. The thick lines represent struts, and the thin lines represent cables.
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2.1. Symmetry and connectivity

We are considering star tensegrity structures that have dihedral
symmetry, denoted by Dn (in the Schoenflies notation, see for
example Kettle (1995)): there is a single major n-fold rotation
ðCi

nÞ axis, which we assume is the vertical, z-axis, and n twofold
rotation ðC2;jÞ axes perpendicular to this major axis. In total there
are 2n symmetry operations. A star structure has the same appear-
ance before and after the transformation by applying any of these
symmetry operations.

Consider a specific set of elements (nodes or members) of a
structure with symmetry G. If one element in a set can be trans-
formed to all of the other elements of that set by the symmetry
operations in G, then this set of elements are said to belong to
the same orbit. A structure can have several different orbits of
elements.

In contrast to prismatic structures, which have only one orbit of
nodes, there are two orbits of nodes in star structures – boundary
nodes and centre nodes, as shown in Fig. 2:

� There are 2n ‘boundary’ nodes arranged in two horizontal circles
of radius R around the vertical z-axis; there is a one-to-one cor-
respondence between the boundary nodes and the symmetry
operations. (When there is a one-to-one correspondence
between elements and symmetry operations, the orbit is called
a regular orbit.)

� There are two ‘centre’ nodes that lie on the centres of the two
horizontal circles; the cyclic (n-fold) rotation operations do not
change the locations of these nodes, while the twofold rotation
operations swap their positions.

Thus, there are in total 2nþ 2 nodes. The two horizontal circles
containing the boundary nodes are at z ¼ �H=2, and the centre
nodes are also at z ¼ �H=2, as shown in Fig. 2(c).

There are three orbits of members: radial cables, vertical cables
and struts. The members in each orbit have the same length and
internal force, and therefore, the same force density (ratio of inter-
nal force to length). Each of the boundary nodes in a circle is con-
Fig. 2. The dihedral star tensegrity structure D1
4. R and H are the radius of
nected by a ‘radial’ cable to a centre node. Hence, there are 2n
radial cables, and each symmetry operation transforms a radial
cable into one of the other radial cables; i.e., there is a one-to-
one correspondence between the radial cables and the symmetry
operations (the radial cables form a regular orbit). Each boundary
node is connected by a strut and a ‘vertical’ cable to boundary
nodes in the other circle. Thus, there are only n vertical cables,
and n struts: there is a one-to-two correspondence between the
vertical cables (or struts) and the symmetry operations. Each ver-
tical cable and strut intersects one of the twofold horizontal rota-
tion axes, and this twofold operation transforms this vertical
cable (or strut) into itself.

It is possible to have different connectivities of the vertical
cables and struts for any n > 3. We use the notation Dv

n to describe
the connectivity of a star tensegrity with Dn symmetry, where v de-
scribes the connectivity of the vertical cables, assuming that con-
nectivity of struts is fixed. The boundary nodes in the upper and
lower circles are, respectively, numbered as N0;N1 . . . ;Nn�1 and
Nn;Nnþ1 . . . ;N2n�1, and the upper and lower centre nodes are num-
bered as N2n and N2nþ1, respectively. We describe the connectivity
of a reference node N0 as follows – all other connections are then
defined by the symmetry.

(1) Without loss of generality, we assume that a strut connects
node N0 in the upper circle to node Nn in the lower circle.

(2) A radial cable in the upper circle connects node N0 to the
centre node N2n, and a radial cable in the lower circle con-
nects node Nn to the centre node N2n þ 1.

(3) A vertical cable connects node N0 in the upper circle to node
Nnþv in the lower circle. We restrict 1 < v < n=2 (choosing
n=2 < v < n would give essentially the same set of struc-
tures, but in a reflection symmetry with respect to the plane
z ¼ 0).

The numbering of nodes of two example structures with D5

symmetry, D1
5 and D2

5, is shown in Fig. 3. Node N0 is connected
by a strut to node N5, and by a vertical cable to node N6 for D1

5,
and to node N7 for D2

5.
the circle of boundary nodes and height of the structure, respectively.



Fig. 3. The nodal numbering of two example structures with D5 symmetry.
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2.2. Symmetric state of self-stress

Because of the high symmetry of the star structures, we only
need to consider the equilibrium of one reference node from each
orbit, to find the symmetric state of self-stress. Thus we consider
the equilibrium of one boundary node, and one centre node, in
the absence of external forces.

Consider the boundary nodes first. Take one of them, for exam-
ple node N0 in the upper circle, as the reference node and let x0 2 R3

denote its coordinates in three-dimensional space. The coordinates
of the other two boundary nodes in the lower circle, connected to
the reference node by the strut and vertical cable, respectively, are
denoted by xs and xv ; the coordinates of the centre node in the
upper circle is denoted by xc .

Since the boundary nodes are in the same orbit, the reference
node x0 can be transformed to the boundary nodes xs and xv by
the proper twofold rotations written in the form of transformation
matrices Rs and Rv :

xs ¼ Rsx0;

xv ¼ Rvx0;
ð1Þ

where Rs and Rv are defined as

Rs

1 0 0
0 �1 0
0 0 �1

264
375; Rv ¼

Cv Sv 0
Sv �Cv 0
0 0 �1

264
375; ð2Þ
Fig. 4. Top view of the structure D1
5. The strut connected to reference node N0 and

node N5 intersects the x-axis.
using the notation Cv ¼ cosð2vp=nÞ and Sv ¼ sinð2vp=nÞ. Note that
here we have effectively chosen a counter-clockwise rotation about
z-axis as the positive direction for rotation of boundary nodes by
our choice of Rv , and we have chosen that the reference node must
be connected to a strut that intersects the x-axis by our choice of Rs.
See an example structure D1

5 in Fig. 4.
The coordinates xc of the centre node in the upper circle is al-

ready known, if the height H of the structure is given:

xc ¼
0
0

H=2

264
375: ð3Þ

Denote the force densities (internal force to length ratios) of the
strut, vertical and radial cables as qs; qv and qr , respectively. The
equilibrium of the reference node, in the absence of external force,
is

qsðxs � x0Þ þ qvðxv � x0Þ þ qrðxc � x0Þ ¼ 0: ð4Þ

From Eqs. (1) and (2), Eq. (4) can be rewritten as

Ex0 þ qrxc ¼ 0; ð5Þ

where **

E¼ E1 O
O E2

" #

¼�
qv ð1�Cv Þþqr �qvSv 0
�qvSv 2qsþqv ðCv þ1Þþqr 0

0 0 2qsþ2qv þqr

264
375; ð6Þ

where E1 2 R2�2 and E2 2 R1�1. Note that E is in fact a part of the
symmetry-adapted force density matrix presented later in the
paper.

Using Eqs. (3) and (6), Eq. (5) can be separated into the follow-
ing two independent equations

E1x0 ¼ 0; ð7Þ

and

E2H=2þ qrH=2 ¼ ð�2qs � 2qv � qrÞH=2þ qrH=2 ¼ 0; ð8Þ

where the vector x0 2 R2 denotes the coordinates of the reference
node in xy-plane. Because H–0, Eq. (8) gives

qv ¼ �qs: ð9Þ

In order to have non-trivial coordinates ðx0–0Þ in xy-plane, E1 should
be singular; i.e., its determinant should be zero. Hence, we have

q2
r þ 2q2

vðCv � 1Þ ¼ 0; ð10Þ

where Eq. (9) has been applied. The force densities of the cables
should be positive, hence we have
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qr ¼ þqv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvÞ

p
: ð11Þ

Thus we have found force densities in the members that allow
the structure to be in self-equilibrium – equilibrium of the centre
nodes is automatically satisfied. For the reference node, the coordi-
nate x0 in the xy-plane lies in the nullspace of E1 and the coordi-
nate in z-direction is H=2, giving

x0 ¼
R
R0

rþ H
2

h ¼ R
R0

Cv � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2Cv
p

Sv

0

264
375þ H

2

0
0
1

264
375; ð12Þ

where R0ð¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� CvÞð1� Sv=2ÞÞ

p
is the norm of r. Thus, R is the

arbitrary radius of the circles containing the boundary nodes. Note
that the equilibrium configuration, in terms of nodal coordinates, is
identical to that of the prismatic structure with the same dihedral
symmetry, and therefore, the ‘twist angel’ hð¼ p=2þ vp=nÞ of the
struts derived by Connelly and Terrell (1995) is also applicable to
the case of star structures.
3. Divisibility

The previous section has found equilibrium configurations for
dihedral star tensegrity structures, but these structures may be sta-
ble or unstable. Before stability investigation in the next section,
we present the condition for indivisible structures, since the divis-
ible structures should have been considered in the simpler sub-
structures with less nodes and members.

Note that, unlike prismatic tensegrity structures catalogued by
Zhang et al. (2009a), the ‘star’ tensegrity structures are never
strictly divisible – all elements of the structure are connected. De-
spite this, it is possible for parts of the structure to act indepen-
dently of one another of one particular set of relative motions –
rotations around the z-axis. Thus we define a dihedral star tenseg-
rity to be divisible if the members and nodes can be separated into
two or more identical substructures that are only interconnected
by being pinned together at the common centre nodes. Rotation
of one substructure about z-axis has no mechanical influence on
other substructures. Hence, the divisible structure has a finite
mechanism, and therefore cannot be stable. As an example, the
structure D2

8 shown in Fig. 5(a) is divisible – it can be separated into
two identical structures D1

4 as shown in Fig. 5(b) and (c). The struts
and vertical cables in each substructure connect one to another to
form a closed circuit, so that the substructures are indivisible.

From the above discussions, we know that divisibility of a star
structure is determined only by the connectivity manner of the
vertical cables. Moreover, divisibility condition for vertical cables
for star structures is actually identical to that for prismatic struc-
tures as discussed by Zhang et al. (2009a). For completeness of
our study on stability of star structures, this condition is repeated
as follows.
Fig. 5. Divisible dihedral star tensegrity structure D2
8. Any of the two substructur
From the labels of nodes and definition of connectivities of
struts and vertical cables, node Ni in the upper circle is connected
to node Nnþiþv by a vertical cable; node Nnþiþv is connected to node
Niþv by a strut; node Niþv is connected to Nnþiþ2v by a vertical cable,
and so on. Eventually, we must return back to the starting node Ni.
If we stop when the linkage returns back to the starting node Ni for
the first time, the boundary nodes in the upper circle in the linkage
can be listed as follows

Ni ! Niþv ! Niþ2v ! Niþjv�mnð� NiÞ: ð13Þ

The numbers j and m indicate the number of boundary nodes in the
upper circle that have been visited, and the number of circuits
around the z-axis, respectively.

To return to the starting node Ni, we have iþ jv �mn ¼ i, and
hence

jv ¼ mn: ð14Þ

We must have integer solution for j and m, which we can write as
j ¼ n=D; m ¼ v=D, where D is any common divisor of n and v. If
the structure is indivisible, we should have visited all n boundary
nodes in the upper circle. Thus, the minimum solution for j for an
indivisible structure is j ¼ n, from which we must have that D can
only be 1. In summary, the necessary and sufficient indivisibility
condition for a star structure is that v and n have no common divi-
sor except 1.

4. Stability

This section will investigate the stability of the star tensegrity
structures. We will introduce the concepts and conditions of super
stability and prestress stability, and show which structures are
super stable, and which are prestress stable for varying ratios of
R=H.

4.1. Super stability conditions for general tensegrity structures

A super stable tensegrity structure is guaranteed to be stable for
any geometry realisation (i.e., any arbitrary R and H in the case of
star structures), and any level of prestress, regardless of material
properties. The force density matrix (sometimes called the ‘small’
stress matrix, for example in Guest (2006)) is key to super stability
property of a tensegrity structure.

The force density matrix Eð2 Rð2nþ2Þ�ð2nþ2Þ for a star structure
with Dn symmetry) is a symmetric matrix, defined using the force
densities: let I denote the set of members connected to free node i,
the ði; jÞ-component Eði;jÞ of E is given as (Zhang and Ohsaki, 2006)

Eði;jÞ ¼

P
k2I

qk for i ¼ j;

�qk if nodes i and j are connected by member k;

0 if nodes i and j are not connected;

8>><>>:
ð15Þ
es D1
4 can rotate about the z-axis without mechanical influence on the other.
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where qk denotes the force density of member k.
Connelly (1982) and Zhang and Ohsaki (2007) presented the

equivalent sufficient conditions for the super stability of a tenseg-
rity structure:

(1) The force density matrix has the minimum rank deficiency
of four for a three-dimensional structure.

(2) The force density matrix is positive semi-definite.
(3) The member directions do not lie on a conic at infinity

(Connelly, 1982), or equivalently, the geometry matrix is
full-rank (Zhang and Ohsaki, 2007).

The third condition ensures that the affine motions, lying in the
nullspace of the geometrical stiffness matrix, are not the infinites-
imal mechanisms of the structure (Zhang and Ohsaki, 2007), and
therefore, it is also the necessary condition for stability while high-
er order of energy is not taken into consideration. Furthermore, the
geometry matrix is assembled using coordinate differences of the
members, and therefore, it depends only geometry realisation of
the structure. Since the third condition is always satisfied for indi-
visible star structures, we need only to consider the first two con-
ditions, both of which are in terms of the force density matrix.
4.2. Super stability of symmetric structures

We can simplify the calculation of the stability properties of the
structure by considering the force density matrix written, using
symmetry-adapted coordinates, in a way that closely mirrors the
treatment in Zhang et al. (2009a,b). The structure of this matrix
can be determined considering the permutation representation of
the nodes, written in terms of irreducible representations. For a
dihedral group Dn, the irreducible representations are denoted as
A1;A2;B1;B2; Ek ðk ¼ f1; . . . ; pgÞ, where B1 and B2 only exist for n
even and

p ¼
ðn� 1Þ=2; for n odd;
ðn� 2Þ=2; for n even:

�
ð16Þ

A1;A2; B1;B2 are one-dimensional and Ek are two-dimensional repre-
sentations. Tables of irreducible representations will be found in
Altmann and Herzig (1994), for instance.

The permutation representation of the nodes can be calculated
separately for the two orbits of nodes. The boundary nodes form a
regular orbit, and hence the representation is the regular represen-
tation, consisting of d copies of each d-dimensional irreducible
representation:

CrðNbÞ ¼ A1 þ A2 þ ðB1 þ B2Þ þ
Xp

k¼1

2Ek: ð17Þ

The two centre nodes do not change locations by any rotation about
the z-axis, but swapped by any dihedral (twofold) rotation, and
hence the representation is

CrðNcÞ ¼ A1 þ A2: ð18Þ

Representation of all nodes CrðNÞ can then be summarised as

CrðNÞ ¼ CrðNbÞ þ CrðNcÞ ¼ 2A1 þ 2A2 þ ðB1 þ B2Þ þ
Xp

k¼1

2Ek; ð19Þ

which characterises the structure of the symmetry-adapted force
density matrix eE. As described in Zhang et al. (2009b), eE for a star
structure can be written as
eE
ð2nþ2Þ�ð2nþ2Þ

¼

eEA1
2�2 eEA2

2�2 eEB1
1�1 OeEB2

1�1 eEE1
2�2 eEE1

2�2

O . .
.

eEEp
2�2 eEEp

2�2

2666666666666666666664

3777777777777777777775
ð20Þ

which is simplified as eE ¼ eEA1 � eEA2 � ðeEB1 � eEB2 Þ � eEE1 � . . . eEEp .
All of the results can be directly found according to Zhang et al.

(2009b), except the A1 and A2 blocks where the centre nodes con-
tribute. Those blocks are given as

eEA1 � eEA2 ¼ TET>: ð21Þ

The transformation matrix Tð2 R4�ð2nþ2ÞÞ is constructed from the
characters of A1 and A2 representations:

T ¼

TA1
b =

ffiffiffiffiffiffi
2n
p

TA1
c =

ffiffiffi
2
p

TA2
b =

ffiffiffiffiffiffi
2n
p

TA2
c =

ffiffiffi
2
p

266664
377775; where

ð22Þ

TA1
b ;T

A2
b ; T

A1
c ;T

A2
c ð2 R2nþ2Þ here are defined as row vectors: the first n

columns in T correspond to the n ‘top’ boundary nodes, the next n
columns correspond to n ‘bottom’ boundary nodes, and the last
two columns correspond to the two centre nodes.

The blocks of the symmetry-adapted force density matrix eE are
summarised as follows.

eEA1 ¼
qr �

ffiffiffi
n
p

qr

�
ffiffiffi
n
p

qr nqr

" #
;

eEA2 ¼
2ðqv þ qsÞ þ qr �

ffiffiffi
n
p

qr

�
ffiffiffi
n
p

qr nqr

" #
¼

qr �
ffiffiffi
n
p

qr

�
ffiffiffi
n
p

qr nqr

" #
;

eEB1 ¼ qr � qs þ ð�1Þvþ1qv ¼ qr þ qv þ ð�1Þvþ1qv ;eEB2 ¼ qr þ qs þ ð�1Þvqv ¼ qr � qv þ ð�1Þvqv ;

eEEk ¼
ðqr þ qv þ qsÞ � qvCkv � qs �qvSkv

�qvSkv ðqr þ qv þ qsÞ � qvCkv þ qs

" #

¼
qr þ qvð1� CkvÞ �qvSkv

�qvSkv qr � qvð1� CkvÞ

" #
; ð23Þ

where the relation qv ¼ �qs from Eq. (9) has been used.

4.3. Super stability of dihedral star structures

When the conditions on equilibrium given in Section 2 are sat-
isfied, the symmetry-adapted force density matrix will have a rank
deficiency of four: each of the A1;A2 and (two) E1 blocks are rank-



1

2
3

4

5

6
7

8

9

cosθ

sinθ

1-1

θ=

0.174
0

0.766-0.50-0.940

4π
9

θ=2π
9

Fig. 6. Cosine corresponding to the connectivity of vertical cables vðn ¼ 9Þ. list can
be condensed as follows with p ¼ ðn� 1Þ=2 elements
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deficient by one. To ensure a super stable structure, these blocks
must be positive semi-definite and the other blocks must be posi-
tive definite. This subsection investigates when this is the case.eEA1 and EA2 have eigenvalues

kA1
1 ¼ kA2

1 ¼ 0 and kA1
2 ¼ kA2

2 ¼ ðnþ 1Þqr > 0; ð24Þ

and hence they are positive semi-definite.
B1 and B2 exist only for n even, and v is odd for an indivisible

structure. Hence, substituting Eqs. (9) and (11) to Eq. (23), we have

kB1 ¼ eEB1 ¼ qr � qs þ ð�1Þvþ1qv ¼ qr � qs þ qv

¼ qvð2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvÞ

p
Þ; ð25Þ

and

kB2 ¼ eEB2 ¼ qr þ qs þ ð�1Þvqv ¼ qr þ qs � qv

¼ qvð�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvÞ

p
Þ: ð26Þ

Thus eEB1 > 0, and is positive definite, while eEB2 6 0. In fact the
equality only holds if v ¼ n=2, and hence for an indivisible structure
ðv–n=2Þ; eEB2 < 0, and is thus negative definite. Therefore, for n
even, dihedral star tensegrity structures are never super stable.
We will now consider indivisible structures with n odd to find the
super stability condition. The two eigenvalues of eEEk are

1
qv

kEk
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CkvÞ

p
> 0;

1
qv

kEk
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CkvÞ

p
:

ð27Þ

For k ¼ 1, we have kE1
2 ¼ 0 as expected for the equilibrium condi-

tion. Thus, for n ¼ 3 where k > 1 does not exist, the dihedral star
tensegrity structure is super stable.

For n > 4, we must consider eEEk for k > 1. For a super stable
tensegrity, eEEk for all 1 < k 6 p ¼ ðn� 1Þ=2 must be positive defi-
nite; i.e., kEk

2 must be positive; and hence, from Eq. (27) we require

Ckv > Cv ; for all 1 < k 6 ðn� 1Þ=2: ð28Þ

Each of Cjvðj 2 f1; . . . ; ðn� 1Þ=2gÞ takes one of the value in the fol-
lowing list with n elements

cos
1
n

2p; cos
2
n

2p; . . . ; cos
n
n

2p
� �

: ð29Þ

The nine cosine values, four of which duplicate, for the case n ¼ 9 is
illustrated in Fig. 6, where the horizontal and vertical axes, respec-
tively, denote cosine and sine values of a specific angle h.

Note that cos i
n 2p ¼ cos n�i

n 2p; moreover, Cjv– cos 2p holds, be-
cause v and n have no common divisor except 1 for an indivisible
structure and 1 < j 6 ðn� 1Þ=2. Thus, the

cos
1
n

2p; cos
2
n

2p; . . . ; cos
n� 1

2n
2p

� �
: ð30Þ

where

cos
1
n

2p >; cos
2
n

2p > . . . > cos
n� 1

2n
2p

� �
: ð31Þ

It is apparent that v ¼ ðn� 1Þ=2 ¼ p will lead to Ckv P Cv for
1 < k 6 p. However, this is the necessary and sufficient condition
only if each of Cjvðj 2 f1; . . . ; ðn� 1Þ=2gÞ has one-to-one correspon-
dence to the elements in the condensed list in Eq. (30), as proved in
Lemma 1.

Lemma 1. Each of Cjvðj 2 f1; . . . ; ðn� 1Þ=2gÞ has one-to-one corre-
spondence with the elements in the condensed list in Eq. (30), for an
indivisible structure with n odd.
Proof. To prove the lemma, we need only to show that the relation
Ck1v–Ck2v holds for k1–k2.
The relation Ck1v ¼ Ck2v holds only if

k1v �m1n
n

2pþ k2v �m2n
n

2p ¼ 2p; ð32Þ

where m1 and m2 are the integers satisfying 1 6 k1v �m1n 6 n and
1 6 k2v �m2n < n. Thus we have

ðk1 þ k2Þv ¼ ðm1 þm2 þ 1Þn: ð33Þ

Since v and n have no common divisor except 1 for an indivisible
structure, the smallest possible (integer) solution for k1 and k2 is
k1 þ k2 ¼ n. However, we have

2 6 k1 þ k2 6 n� 1 < n; ð34Þ

due to 1 6 k1 6 ðn� 1Þ=2 and 1 6 k2 6 ðn� 1Þ=2. Therefore, Eq. (33)
can not hold, and hence Ck1v–Ck2v holds for k1–k2.

As there are in total ðn� 1Þ=2 elements for jð2 f1; . . . ;

ðn� 1Þ=2gÞ, and ðn� 1Þ=2 different values in Eq. (30), every cosine
value in the list has been taken, but only once,by Cjv for an
indivisible structure with n odd, which proves the lemma. h

Some examples are given in Fig. 7 for different v for the case
n ¼ 9. The solid lines links the points showing cosine values for
Cjv ðj 2 f1; . . . ;4gÞ. The four points take different cosine values for
indivisible structures ðv ¼ 1;2;4Þ, and duplicate for the divisible
structure ðv ¼ 3Þ.

From Lemma 1, we must have the following relation from Eq.
(30) to ensure that the relation in Eq. (28) always holds

v ¼ p ¼ n� 1
2

: ð35Þ

In other words, a dihedral star tensegrity structure is super stable if
and only if it has odd number of struts (n odd), and the struts are as
close to each other as possible ðv ¼ ðn� 1Þ=2Þ. This is the necessary
and sufficient condition for super stability of dihedral star tenseg-
rity structures. By contrast, super stability of a prismatic structure
is not related to connectivity manner of its vertical cables: it is
super stable if and only if its horizontal cables are connected to
adjacent nodes (Connelly and Terrell, 1995).

4.4. Prestress stability of dihedral star structures

We have used analytical method to find the super stability con-
dition for dihedral star tensegrity structures in the previous sec-



Fig. 7. Connectivity of boundary nodes in one circle through struts and vertical cables ðn ¼ 9Þ. Every cosine value is taken only once, if the structure is indivisible, see the
cases (a), (b) and (d). For the divisible case in (c), only part of the cosine values have been taken.

Fig. 8. Prestress stability of the dihedral star tensegrity structure D1
7. When the height/radius ratio is larger than 1.02, it is prestress stable with the positive minimum

eigenvalue of the reduced stiffness matrix.

J.Y. Zhang et al. / International Journal of Solids and Structures 47 (2010) 1–9 7



Fig. 9. Prestress stability of the dihedral star tensegrity structure D2
7. When the height/radius ratio is larger than 0.32, it is prestress stable with the positive minimum

eigenvalue of the reduced stiffness matrix.

Fig. 10. Prestress stability of the dihedral star tensegrity structure D3
7. From the super stability condition for star structures, this structure is super stable, and hence, it is

always prestress stable irrespective of the height/radius ratio.

Table 1
Stability of dihedral star tensegrity structures Dv

n , for 3 6 n 6 10. ‘S’ denotes super
stable; if the structure is prestress stable only when the height/radius ratio is larger
than r, then this is indicated as ‘> r’; and if the structure is divisible, its substructures
are given.

v n

3 4 5 6 7 8 9 10

1 S 6 0:46 6 0:65 6 0:87 6 1:02 6 1:18 6 1:30 6 1:43
2 2D1

2
S 2D1

3
6 0:32 2D1

4
6 0:57 2D1

5

3 3D1
2

S 6 0:11 3D1
3

6 0:29

4 4D1
2

S 2D2
5

5 5D1
2
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tion. In this section, we will show through numerical calculations
that some other structures, that are not super stable, can still be
prestress stable if certain conditions are satisfied – a treatment
that follows Zhang et al. (2009a).

A prestress stable structure has a positive definite reduced geo-
metrical stiffness matrix

Q ¼MKGMT ; ð36Þ

where columns of M are the infinitesimal mechanisms of the struc-
ture, and KG is the geometrical stiffness matrix defined by the ten-
sor product of a 3� 3 identity matrix I3 and the force density
matrix, KG ¼ I3 � E (Guest, 2006). The structure is prestress stable
if and only if the minimum eigenvalue kQ of Q is positive.

As an example, Figs. 8–10 plot the values of kQ against the ratios
of height to radius ðH=RÞ for the star tensegrity structures with
dihedral symmetry D7. The force density matrix is calculated rela-
tive to the force density of vertical cables, or by assigning qv ¼ 1
alternatively without losing generality. The structure D3

7 is super
stable and is thus always prestress stable; the structures D1

7 and
D2

7 are not super stable, but it can be observed from Figs. 8 and 9
that they are prestress stable if the height/radius ratio is large
enough.

These figures have the same appearance: the minimum eigen-
value of the reduced stiffness matrix increases sharply firstly,
and then decreases with the increasing height/radius ratios. Final-
ly, the minimum eigenvalue converges gradually to a positive va-
lue, such that the structure is prestress stable.

Table 1 shows the stability of star structures with 3 < n 6 10. It
can be seen that every indivisible structure in this range can be
prestress stable.
5. Discussion

This paper has presented the necessary and sufficient condition
for super stability of dihedral star tensegrity structures – the struc-
tures are super stable if and only if they have odd number of struts,
and the struts are as close to each other as possible. Furthermore,



Fig. 11. Dihedral star tensegrity structure with centre member. It has the same connectivity as the structure D1
4, except for the additional centre member connecting the two

centre nodes. The parameter h denotes the distance between a centre node to the closest centre of circle containing boundary nodes. The centre member is a strut when h > 0,
a cable when h < 0, and there exists no prestress in the member when h ¼ 0. This structure is prestress stable but not super stable as confirmed by numerical calculation.
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we conjecture that all indivisible dihedral star tensegrity are pre-
stress stable if the height/radius ratio is large enough: numerical
calculations have shown this to be true for all 3 6 n 6 1000,
although only simpler cases 3 6 n 6 10 have been presented.

If the centre nodes of a star structure are connected by an addi-
tional ‘centre’ member, see for example the structure shown in
Fig. 11, the new structure is also of dihedral symmetry. Numerical
calculations show that the super stability condition and the conjec-
tures on prestress stability for the structures without centre mem-
bers also apply to these structures. However, any proof of their
stability properties is complicated by the existence of an additional
parameter, the distance between the centre nodes.
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